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SUMMARY 

The problem of establishing appropriate conditions for the vorticity transport equation is considered. It 
is shown that, in viscous incompressible Rows, the boundary conditions on the velocity imply conditions 
of an integral type on the vorticity. These conditions determine a projection of the vorticity field on the 
linear manifold of the harmonic vector fields. Some computational consequences of the above result in 
two-dimensional calculations by means of the nonprimitive variables, stream function and vorticity, are 
examined. As an example of the application of the discrete analogue of the projection conditions, 
numerical solutions of the driven cavity problem are reported. 

KEY WORDS Vorticity Conditions Integral Conditions Incompressible Navier-Stokes Equations Computation 
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1. INTRODUCTION 

In dealing with the vorticitylstream function equations it is common to attempt to assign 
boundary conditions to the vorticity equation as an equivalent substitute for the boundary 
conditions which are originally attached to the stream function equation. The problem of 
finding such vorticity conditions has been touched upon in many papers, especially in the 
computational literature, and a disconcerting variety of answers and working rules have been 
put forward (see, for instance, References 1 and 2 and the references therein), It is then 
worth attempting to elucidate the problem from a conceptual point of view. 

In the present paper it is shown that the boundary conditions on the velocity can be 
transformed to completely equivalent conditions on the vorticity field. It must be remarked, 
however, that the latter are not of the usual, boundary-value type. As it turns out, the proper 
conditioning for the vorticity is of an integral (nonlocal) character and consists in fixing a 
projection of the vorticity field on the linear manifold of the harmonic vector fields. 

This circumstance indicates that, once the problem has been stated in terms of boundary 
values for the stream function and its normal derivative, it will not admit an exact 
reformulation in terms of vorticity boundary values, except when the vorticity on the 
boundary is specified from the very outset, as, for instance, on planes of symmetry. As a 
practical consequence, in numerical calculations it is impossible to devise a boundary 
vorticity formula which will prove effective in the generality of cases. On the other hand, the 
integral projection conditions allow a splitting of the biharmonic equation into two second- 
order equations to be solved in sequence. A similar, yet incomplete, splitting is also possible 
for the general case of nonlinear equations in two and three dimensions. 

The present paper is structured as follows. In Section 2 the projection conditions are 
derived in the simple case of the biharmonic equation, viz. the equation for steady creeping 
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Aows, where the scalar character of the problem makes the argument transparent. In Section 3 
the same result is extended to the nonlinear time-dependent equations of incompressible 
viscous flows in two dimensions. The generalization to the three-dimensional case is 
presented in Section 4 by introducing scalar and vector potentials of the velocity field. 
Section 5 deals with the axisymmetric case. Section 6 describes the discrete analogue of the 
vorticity conditions for two-dimensional problems, and presents some computational schemes 
for the steady and unsteady equations. Finally, in Section 7, the simple numerical example of 
the driven cavity is considered, and finite difference solutions of this model problem are 
reported. The last section is devoted to a few conclusive remarks. 

2. PROJECTION CONDITIONS 

Let V be a simply connected bounded domain of the plane, with boundary S. Consider the 
biharmonic problem (Stokes problem) 

v4* = f, (1) 
$ Is = a, (2) 

a4lan Is = b, (3 )  
where f is a function given in V, and a and b are functions prescribed on S. Let the variable 
5 = V z $  be introduced, so that the fourth-order equation (1) for $ can be rewritten as a 
system of two second-order equations for 5 and 4, namely, 

v25 = f, 
V2$ = 5. 

(4) 
(5) 

To split (4) from (3, conditions for 5 are required which are the exact substitutes for either 
(2) or (3) or both. TO this end, notice that, by (S), (2) and (3), [ is the Laplacian of some 
function $ satisfying $ Is a and a4bn  Is = b. This characterization of 6 can be translated 
into an equivalent one that depends only on the boundary data a and b of 4, by virtue of the 
following basic remarks: 

A function [ in 

for any function 

V is such that 5 = VZ$, with 4 Is = a and a$lan Is = b, if and only if 

q harmonic in V, i.e. such that V2q = O  in V. 

To prove this proposition first let 5 = V2$ for some function 4 with 4 Is = a and a+/an Is = b. 
By Green’s theorem it results, for any harmonic function q, 

I d  V5q = k V ( V 2 $ h  

= IdV$V2q -+ f ds($q - $%) an 

= $ d s ( b q - a 2 ) .  

Conversely, let v be a function such that 

I d  Vvq = f ds( bq - a E) 
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for any harmonic function q. Then, let + be the unique solution of the Poisson equation 
V’Ji = u with Dirichlet boundary condition $Is = a. By Green’s theorem it results, for any 
harmonic function, 

Hence, by the assumption, 

From the arbitrariness of q on S it follows that a$/an I, = b. The use of conditions (6) allows 
therefore the complete splitting of the biharmonic problem (1)-(3) into the sequence of two 
second-order problems 

V*L=f, jdVtq=$ds(bq-o$), Vq:V2q=0, (7) 

V2$ = (, (L Is = a. (8) 
While the second Poisson equation is provided with usual Dirichlet boundary condition, the 
first one is supplemented by conditions of integral type which admit a simple geometrical 
interpretation. The left hand side of (4) is the scalar product of 6 and q in the Hilbert space 
L2 of square integrable functions. When a = b = 0, is orthogonal in the L2 sense to the 
manifold of the harmonic functions. In the general case of nonhomogeneous boundary 
conditions for Ji, the projection of 5 on this manifold is determined by a and b. 

It is noted that the projection conditions lead to the complete decoupling of the two 
Poisson equations which result from the biharmonic equation. Therefore, $ can be calculated 
directly and no iterative method is required, as in the case of the coupled equation approach3 
to the biharmonic problem. 

Furthermore, it is worth pointing out that in equation (8) the Dirichlet condition can be 
also replaced by the Neumann condition d$/an Is = b, augmented by prescribing $(rs) = 
a(rs>, for a single point r, of S. In this case the solvability condition of the Neumann 
problem 

J d v t  = f dsb (9) 
is automatically satisfied since it is simply the projection condition (6) with respect to the 
trivial harmonic function q = 1. Therefore, the use of the integral projection canditions €or 
the first Poisson equation allows a free choice between Dirichlet and Neumann boundary 
conditions for the second equation. 

3.  TWO-DIMENSIONAL EQUATIONS 

The application of the above remark to the equations of viscous incompressible flows in two 
dimensions is straightforward. In this case the dimensionless Navier-Stokes equations for the 
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nonprimitive variables, namely, the vorticity 5 and the stream function $, are 
- 1 v24 = -+ ac (u . V)l, 
Re at 

V2$ = 4, (11) 
where t; = -cz, Re is the Reynolds number, u = -4 X V$, % being the unit vector orthogonal to 
the plane of the motion. The velocity boundary condition P Is = b(rs, t), rs E S, allows the 
specification of boundary values for both the stream function and its normal derivative. In 
fact, incompressibility requires 4 dsn . b = 0 at any time, so that, since the domain V is 
bounded and simply connected, one can define, apart from an arbitrary additive constant, the 
single-valued function Q = a(s, t )  = Jsodsn. b. Setting b = b(s, t )  = -7.  b, the boundary condi- 
tions for + read 

Since the conditions for t; and $ discussed in the previous section are encountered also in 
problem (10)-(12) irrespective of the particular form of the equation for 6, this problem can 
be restated in the following form 

(12) q~ I s  = U, a q I h  Is = b. 

1 - v25 = - f (a . V) 4, 
Re at 

vz+ = t (15) 
$ IS = Q. (16) 

Therefore, at any time, the projection of the vorticity field 5 011 the linear manifold of the 
harmonic functions is determined by the instantaneous values of the tangential and normal 
velocity along all the boundary. It is clear that these integral conditions cannot be reduced to 
conditions of a local type specifying the boundary values of the vorticity. 

4. THREE-DIMENSIONAL EQUATIONS 

In  this section the general case of three-dimensional flows is considered also in view of the 
growing computational interest in the nonprimitive variable representation of viscous flows 
in three  dimension^.^-^. In this case, the explicit separation of the irrotational and rotational 
components of the velocity field by means of the scalar and vector potentials, respectively, 
singles out that part of the boundary velocity which actually affects the vorticity field, via the 
projection conditions for the vorticity vector. Furthermore, it lurns out that the projection 
conditions depend on the gauge which is chosen for the vector potential of the velocity field. 

The basic remark given in Section 2 has the following vector analogue in three dimensions: 

A divergenceless vector 5 in V is such that &= VXVXA, with n x  A/, = n x a  and 
nxVxAls  =nxb,  if and only if 

for any vector field q such that V x V x q = 0 in V. 

Here V is a simply connected domain of the three-dimensional space, a and b are vector 
fields defined on S, the boundary of V, n is the unit normal vector on S. This can be proven 
much as in the two-dimensional case. Necessity is a conkequency of the vector analogue of 
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Green's theorem, namely, 

jdV[B. V xV xA -A.  V xVXB] = dSC(n x VXA) . B +n% A, V X  B]. (f 
Sufficiency of condition (17) comes from the fact that the problem 

V x V x A = &, 
nxA Is =nxa,  

has (at least) one solution provided that V .g = 0 (see, e.g. Morse and Feshbach, Methods of 
Theoretical Physics, 1953, p. 1788) and using again Green's formula. To cope easilyg-" with 
general velocity boundary conditions let the scalar potential and the vector potential A 
of the velocity field u be introduced 

u=V++VxA. (18) 

Then the Navier-Stokes equations yield the following system of equations for the vorticity 
5 = V x u and the potentials 4 and A 

v2qi = 0, (19) 

(20) 

(2 1) 

-v 1 2 &--+Vx(<xu), -4 
Re at 

VXV X A =&. 
The velocity boundary condition is u Is =b(r,, t), and the velocity b prescribed on S is 
assumed to satisfy at any time 

$ dSn . b = 0. (22) 

The boundary condition u Is = b may be split into 

Furthermore, knowledge of b over S allows one to specify boundary values of the normal 
component of 

n .& Is =n. v, xb, (25) 

where VT is the surface gradient operator (typically, on a stationary rigid body n . V, x b = 0). 
The coupling of equations (19)-(21) through conditions (23) and (24) is now eliminated, 

and a system of three equations to be solved in sequence, aside from the coupling due to the 
nonlinear term, is derived by an argument consisting of three steps: (i) separation of (23) into 
two independent conditions for 4 and A; (ii) choice of the homogeneous boundary condition 
for the tangential components of the vector potential; (i$ use of (17) to derive the integral 
conditions for the vorticity. 

by means of condition 

Let the scalar potential be specified to have the boundary condition" 

n . V 4  IS=n.b, (26) 

which, in view of (22), allows the equation (19) to be solved, apart from an arbitrary additive 
constant. Due to (23), this implies that 

n . Vx A Is = 0, (27) 
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and that (24) can be rewritten in the form 
n x V x A  Is =nx(b-V& Is) (28) 

The vector potential A, as defined by (18), is arbitrary by the gradient of any function. 
Because of (27), i.e. n . V x A  Is = 0, the tangential projection A, of A on S may be 
expressed as A, =V,x,, where x, is a function of the surface co-ordinates. 

Let x be an extension of x, to V (or the solution of the Poisson problem V2x = V . A, 
x Is = x7, if A is requested to satisfy the gauge V . A = 0). Then, the vector field A -Vx is a 
vector potential as A and, in addition, it has a zero tangential projection on S.'O-" It follows 
that the vector potential A can be chosen so as to satisfy 

nxAl ,=O.  (29) 

Use of (29) and (28) in relationship (17) directly provides the vectorial form of the projection 
conditions 

(30) 

that, together with (25), supplement the vorticity transport equation (20). In its turn, equation 
(21) is adequately supplemented by boundary condition (29) or (28). The resulting final 
system for 4, 5 and A, rewritten entirely for clarity, is 

I d & .  q = f dSn x (b -V+). q, Vq:V x V  x q = 0,  

V2& = 0, (31) 
n . V &  Is = n . b ;  (32) 
- 1 0 ° C  = a i  - + v x (5 xu), 

II Re at . (33) 

JdVC.q= dSnx(b-V4).q,  Vq:VxVxq=O, (34) + 
(35) 

V x V x A = & ,  (36) 

The choice of the Euclid invariant gauge V . A = 0 for the vector potential slightly modifies 
the projection conditions (34) and the problem (36), (37). If V . A = 0, the vector fields q can 
be chosen to satisfy the same gauge, namely, V . q = 0, and (34) becomes 

n . 5  Is = n .V, x b ;  

n x A  Is =O. (37) 

d Vg . q = f dSn x (b - V&) . q, V q  : V"q = 0. 

On the other hand, if V .A=O, problem (36), (37) becomes" 

V2A= -c, 
n x A Is = 0, 

Finally, it is worth remembering that, once the system (31)-(37) has been solved, the pres- 
sure field p of the considered problem is determined, apart from an arbitrary reference value, 
by calculating the line integral of the equation 

where u = V 4 + V x A .  
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5. COMMENTS AND T H E  AXISYMMETRIC CASE 

The direct inspection of (34) shows that the projection conditions depend on the geometrical 
characteristic of the domain V through the linear manifold of vector fields q satisfying 
V x V x q = 0. In  three dimensions the vorticity field 5 has a projection on this manifold which 
is fixed uniquely by the difference between the tangential component of the velocity 
prescribed on the boundary and the  tangential component of the velocity due to the potential 
motion at the boundary. 

It is interesting to note that, in plane two-dimensional flows, i.e. when lX = ly =A, =A, = 
qx = qy = 0 and only  4, l,, A,, qz survive, system (31)-(37) becomes a system of three scalar 
equations which is an alternative and to be preferred to (13)-(16) if one aims at describing 
separately the inviscid (4) and the viscid (A,) components of the fluid motion. The 
equivalence of the two formulations is demonstrated by introducing the harmonic function 4' 
conjugate to 4, i.e. satisfying the Cauchy-Riemann conditions a4'/ax = -a4/ay, a4'/ay = 
&@/lax, and by observing that the two equations for A, and 4', with the respective boundary 
conditions, merge into a single Poisson equation for the variable J, = A, + 4'. It follows that, 
in plane problems, the stream function JI is coincident with the Component A, of the 
three-dimensional vector potential only when the normal component of the boundary 
velocity is zero a1 >ng the entire boundary. 

A further point deserves attention about problem (33)-(35). Even when the coupling due 
to the nonlinear term V x (5 x u) is disregarded, the presence of the projection conditions 
prevents the separation of the equations for the components of 5 also in domains and 
co-ordinates for which the vector Poisson equation is separable. Axisymmetric flows are an 
exception to this rule if use is made of the mixed representation of the flow by the 
nonprimitive variables for the motion in the meridional plane and by the primitive variable 
for the azimuthal motion. In fact, among the vector fields -q such that VxVxq=O, one can 
consider those independent of the azimuthal angle cp and having only the azimuthal 
component. Considering, for instance, the case of spherical co-ordinates (r, 6, c p ) ,  and 
denoting by (6 the unit vector normal to the meridional plane, we can take q = + q ( r ,  6), so 
that V x V x q  = 0 becomes E2q  = 0, where 

V2 being the two-dimensional Laplace operator for the variables in the meridional plane. 
Then, the azimuthal and meridional components of the velocity and vorticity are introduced 
according to 

u = @u +v x (+JI), (44) 
5 = @l+V X (@u), (45) 

where JI is the stream function variable for the two-dimensional motion in the meridional 
plane. (Notice that 9 = A + 4', where A is the azimuthal component of the vector potential 
A and 4' satisfies E24' = 0, 4' Is = a, the relationship between 4' and the scalar potential 4 
being that V x (44') = V4.) 

From (31)-(37) the equations for the unknowns u(r, O), c ( r ,  6) and J,(r, 0) can be obtained 
in the form 

u l , = c ;  (47) 
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-L E25 = S+Q.  v x (5  XU), 
R e  a t  

dvr sin 05v = - f dsr sin 8 [ bq - a ("v -- t - q -- a (rsin o , , ) ] ,  V ~ : E Z ~  =o;  (49) I an r s i n 8 a n  

where 

a = (1: dsr sin On. b)/ ( r  sin 0). (52)  

h =  -T.b, 
c == Q . b. 

(53)  
(54) 

The domains of integrals occurring in (49) and (52) belong to a meridional section of the 
originally axisymmetric three-dimensional domain. 

In cylindrical co-ordinates ( r ,  z, c p ) ,  the equations for axisymmetric flows have the same 
form (43)-(54) provided that sin 8 is replaced by 1. 

Finally it is noted that the arguments leading to the projection conditions are completely 
independent of the form of the dynamical equation governing the evolution of the vorticity 
field. Therefore these conditions apply to  viscous incompressible flows also in the presence of 
external body forces, such as Coriolis and buoyancy forces. 

A further application is 10 the equations of the magnetohydrodynamics where integral 
projection conditions for the variables V X u  and V X B  must be considered whenever the 
vector potentials of the velocity o and of the magnetic field B are chosen as independent 
variables. 

6. DISCRETIZED PROJECTION CONDITIONS 

Discrete analogues of the equations for steady and unsteady flows in two dimensions are now 
considered focusing on the computational consequences brought about by the projection 
conditions. A complete error analysis of the numerical schemes to be introduced will not be 
attempted here, but numerical results of a model problem will be given in the next section. 

T h e  discretized version of (14) at time f " + l = ( n  + 1 ) A f  reads 

where the integrals and the Laplace operator are to be interpreted in the sense of the 
assumed spatial discretization obtained by means of finite differences or finite elements. 

It can be easily shown that the manifold of the discrete harmonic functions contains 
exactly as many linearly independent functions as boundary points, say the N discrete 
harmonic functions q-, a = 1,2, . . . , N ,  vanishing at all 1v boundary points except one 

v2q, = 0, vu Is = 6,,, (56) 
6,, being the Kronecker symbol. It follows that integral conditions (55) provide the N 
linearly independent algebraic equations required to close the system of equations resulting 
from the spatial discretization of the second-order equation for (. 
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The explicit form of conditions (55) depends whether they apply to time-independent or 
time-dependent equations, and whether explicit or implicit differencing is chosen for the 
terms of the vorticity transport equation. Computational schemes for steady and unsteady 
problems are now described which assume the implicit treatment of the linear vorticity- 
diffusion term v25 and the explicit treatment of the nonlinear advection term u . Vg = J(5, $). 

For the time-independent equations the iterative scheme is: start with 5' = 0 and $to = 0; 
when 5" and $"' are known, define ("'+I and I,V""' as the solutions of 

VORI'ICITY IN VISCOUS INCOMPRESSlBLE FLOWS 

VZgm+' =Re  J(("', $"'), 

The solution 5""' of (57) and (58) is computed as follows. Equation (57) is first solved with 
arbitrary boundary values in the auxiliary variabie iL. Then ["+' is sought in the form 

By imposing (58) ,  the vector pm+' = {p,"", a = 1,. . . , N}, is found to be the solution of the 
linear system 

(62) Apm+' = Cm+l, 

where matrix A and vector ern+' are defined by 

(63) 

(63) shows that A is the matrix of the scaIar products among the basis functions qa (Gram 
matrix). It follows that A is symmetric definite positive. Vector em+' must be calculated at 
each iteration, whereas matrix A can be generated and factorized once and for all. 
Furthermore, these constructions depend oniy on the geometry of the domain, so that 
solutions at different Reynolds numbers and with different boundary conditions for a fixed 
domain can be calculated b y  the same matrix A. 

Notice that, for Re = 0, the considered scheme becomes a direct (noniterative) method of 
solution for the biharmonic equation, dealing with Poisson equations and the symmetric 
linear system (62) with N unknown, where N is  the number of boundary points. The method 
is such that the calculation of the vorticity at interior points is separated from the calculation 
of the vorticity at points on the boundary, the projection conditions for the vorticity 
establishing relationships between vorticity values at all boundary points. An iterative 
scheme to perform the same kind of separation has been previously proposed by Israeli." 

A scheme with the same differencing of (57)-(60) is possible for the time-dependent 
equations. The algorithm starts with 5' = 50~v2$t0 and $'= Jl0, where $o is the initial stream 
function; when the solutions 5" and 9" at the time nht are known, define ["+' and 9"" as 
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the solutions of 

where I denotes the identity matrix for finite differences whereas the consistent mass matrix 
for finite elements. 

This time the solution 5"" of (65) and (66) is sought in the form 
N 

t n + l =  il+ c p:+%,, (69) 

where 5% satisfies (65) with arbitrary boundary conditions, and the functions O,, a =  
1,2,. . . , N, satisfy the Helmholtz equations 

a=l 

By imposing (66), one finds the following linear system for the, unknown vector pn+l 

BP"+' =En+'> (7 1) 

where 

By means of the discretized version of Green's theorem it can be shown from (56) and (70) 
that matrix B of the time-dependent equations is also symmetric. 

The occurrence of Poisson and Helmholtz problems in (561, (57), (59) and (65) ,  (70) 
makes the above schemes interesting particularly in situations where direct algorithms for the 
solution of second-order equations are available. Anyway, these schemes, which are based 
on and impose the exact constraints for the vorticity, provide at least a rationale for deriving 
approximate relationships of increasing accuracy for the vorticity boundary values. 

7. NUMERICAL EXAMPLE 

In this section the numerical schemes (57)-(64) and (651-473) are employed to calculate the 
viscous flow in a two-dimensional square cavity, bounded by three stationary walls and by a 
fourth upper wall sliding at a constant speed: the driven cavity problem (see, for instance, 
References 13-16). 

Numerical results are reported here to serve as a simple illustration of the use, and to give 
some valuation of convergence and efficiency, of schemes which employ the projection 
conditions. No extensive investigation of the above properties and no detailed comparison 
with other methods is attempted here. 
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For the considered problem all the variables are made dimensionless by taking the depth I,  
of the square cavity and the velocity U of the upper wall as the units. A rectangular 
co-ordinate system (x, y )  with its origin at the lower left corner of the cavity is introduced so 
that the boundary conditions to be satisfied are 

+ = a+iax = o at x=O and x = l ,  
+ = a4/ay = o at y =0, 
IJ = 0, aIJ/ay = -1 at y = 1. 

Finite differences are employed over the uniform mesh 

(74) 

x i= ih ,y ,= jh ,  i , j = O , 1 ,  . . . ,  r, 

where ii = l/r.  The five-point approximation of V2 is used and the discrete integration over V 
is performed with weighting coefficients 1, 1/2 and 1/4 for interior, boundary and corner 
points, respectively. The choice r = 2' allows the direct solution of the involved Poisson and 
Helmholtz equations by means of the fast Poisson solvers. Computations have been per- 
formed on an IBM 370/165 using single precision arithmetic, except for accumuiation of 
scalar products and of linear combinations (61) and (69) where double precision has been 
used. 

As shown by I~ rae l i , ' ~  the iterative solution of the vorticity/stream function equations is 
numerically unstable, even in the linear case Re = 0, when the two Poisson equations are 
solved exactly at each iteration and the vorticity boundary values are calculated in terms of 
stream-function values without any averaging or relaxation process on the boundary. 
Actually, in the test problem considered here if the commonly used approximation of 
boundary vorticity 

5s"" = 2(4s"*, - bh)/h2 (75) 

is employed, numerical divergence occurs at Re = 0 after 210, 68,43 and 29 iterations on the 
mesh r = 4 , 8 ,  16 and 32, respectively. On the contrary at Re=O the steady algorithm 
(57)-(64) provides the solution directly on any mesh. The fields 6 and $ obtained by this 
method in the case r = 3 2  are shown in Figure 1. 

At Re>O the number of iterations required to obtain the solution within a fixed accuracy 
depends on the finite difference approximation of the nonlinear term J ( [ ,  4). This depen- 
dence is not important when R e 6  10 and solutions are obtained, with a maximum local error 
between two subsequent iterates of 6 and 9 less than 5.10-6, in less than 10 iterations 
irrespective of the discrete approximation chosen for J and of the considered mesh. At low 
Reynolds numbers the convergence rate is independent of the mesh size and is similar to the 
one occurring in the iterative solution of the nonlinear fourth-order equation by means of 
the direct biharmonic 

At Re- 100 the explicit treatment of the nonlinear term in the steady algorithm is such 
that the convergence rate depends on the spatial discretization chosen for the Jacobian." 
The differencing which shows the best convergence is the centred diagonal differencing of J 
written in divergence form. The solution for Re=100 and r=32,  starting from <'n=o= 
$"=O = 0, is obtained in 176 iterations with a maximum local error <5 % This solution is 
shown in Figure 2. Its computation has required a time of less than 10 minutes including 
generation and factorization of matrix A. The computed solutions shown in Figures 1 and 2 
are in fair accordance with results previously obtained by different computational 
s~hemes . '~ - '~  For instance, the positions of the main vortex centre are coincident, within plot 
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Figure 1. Vorticity and stream function patterns obtained by direct 
method for the steady flow in a square cavity at Re = 0 
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accuracy, with those in  Burggraf’s paper. At these points + = 0.0995, 5 = 3.21 at R e  = 0, and 
4=0.101, <=3.16 at  R e =  100, quite close to the reference values of (0-0998, 3-20) and 
(0.101, 3.14), respectively, obtained by Burggraf using a uniform mesh of 41x41 points. 
‘The two secondary eddies a t  the lower corners reported by several authors are also present 
in our numerical solutions although not shown in the figures for plotting convenience. 

Finally we have calculated by means of the unsteady algorithms (65)-(73) the evolution of 
the flow field in the cavity when the upper wall is started impulsively with the fluid a t  rest 
initially. We have considered the case R e  = 1000, A l  = 0.05, r = 16 using the fourth-order 
centred-difference approximation for the derivatives in the advection term, as suggested by 
Ozawa.I6 I n  Figure 3 we report the stream function a t  times I = 5,  10, 15, 20, 25 and 50. At 
t = 50 the maximum local differences between (c“, +”), and (l””, + “ + I )  is 6 . 2 ~  The 
vortex centre is located at  x =0.44, y =0-59 where 5 = 1.522 and 4 =0-080, in fair 
agreement with numerical results x = 0.453, y = 0-587, 6 = 1-458 and + = 0-0756 obtained 
by Ozawa. 

8. CONCLUSION 

Although the idea of conditions of an integral type for the vorticity has been anticipated by 
Cheng,’’ their explicit form and their geometrical interpretation does not seem to have been 
fully recognized. These conditions provide the vorticity transport equation with an indepen- 
dent conditioning. In fully three-dimensional problems, the vector projection conditions d o  
couple the three vectorial components of the vorticity. On the other hand, in two- 
dimensional and axisymmetric problems, the projection conditions are of a scalar character 
and involve one component of the vorticity vector only. 

The integral conditions have been implemented into a few computational schemes for the 
solution of the steady and unsteady two-dimensional equations in discretized form. The 
numerical results obtained in finite difference calculations of a model problem indicate that 
the use of the projection conditions avoids the numerical instability that is encountered when 
vorticity boundary values are specified in  terms of stream function values without a 
relaxation process on the boundary. The method has been successfully tested up to  Reynolds 
numbers of 1000. In the authors opinion, its simplicity and logical coherence seem to 
compensate for a somewhat larger computational effort. 
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